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1. Fundamental symmetries

● what is our current understanding ?
● what lies beyond ?

2. Tools of the trade
● trapping short-lived neutral atoms
● polarizing the atom cloud

3. Angular correlations using laser-cooled atoms

● angular correlations of polarized 37K
● expected limits on right-handed currents
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All of the known elementary particles and their interactions are
described within the framework of

● quantum + special rel ⇒ quantum field theory
● Noether’s theorem: symmetry ⇔ conservation law

Maxwell’s eqns invariant under
changes in vector potential

⇔
conservation of

electric charge, q

and there’s other symmetries too:
time ⇔ energy

space ⇔ momentum
rotations ⇔ angular momentum

...
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All of the known elementary particles and their interactions are
described within the framework of

● quantum + special rel ⇒ quantum field theory
● Noether’s theorem: symmetry ⇔ conservation law

● SU(3)
︸ ︷︷ ︸

strong

×

electroweak
︷ ︸︸ ︷

SU(2)L
︸ ︷︷ ︸

weak

×U(1)
︸︷︷︸

E&M

+ (classical general rel)
︸ ︷︷ ︸

gravity
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All of the known elementary particles and their interactions are
described within the framework of

● quantum + special rel ⇒ quantum field theory
● Noether’s theorem: symmetry ⇔ conservation law
● SU(3)× SU(2)L × U(1): strong + electroweak
● 12 elementary particles and 4 fundamental forces
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Does the Standard Model work??
● predicted the existence of the W±, Z◦, g, c and t
● is a renormalizable theory
● GSW ⇒ unified the weak force with electromagnetism
● QCD explains quark confinement

aµ ≡
1
2(g − 2)

(PRL 92 (2004) 161802)

aµ(exp) = 11 659 208(6)× 10−10

aµ(SM) = 11 659 181(8)× 10−10

±1 part-per- million !!

a
µ
×

10
10
−
11
65
90
00



That’s all fine and dandy, but. . .

Dan Melconian July 25, 2012
REU presentation

– 5

Does the Standard Model work??
● predicted the existence of the W±, Z◦, g, c and t
● is a renormalizable theory
● GSW ⇒ unified the weak force with electromagnetism
● QCD explains quark confinement

aµ ≡
1
2(g − 2)

(PRL 92 (2004) 161802)

aµ(exp) = 11 659 208(6)× 10−10

aµ(SM) = 11 659 181(8)× 10−10

±1 part-per- million !!

a
µ
×

10
10
−
11
65
90
00

Wow . . . this is
the most precisely tested theory ever conceived!
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● values of parameters: does our “ultimate” theory really need 25 arbi-
trary constants? Do they change with time?

● dark matter: SM physics makes up only 4% of the energy-matter of
the universe!

● baryon asymmetry: why more matter than anti-matter ?

● strong CP : do axions exist? Fine-tuning ?

● neutrinos: Dirac or Majorana ?

● fermion generations: why three families?

● weak mixing: Is the CKM matrix unitary ?

● parity violation: is parity maximally violated in the weak interaction? No
right-handed currents?

● EW symmetry breaking: how do the fermions acquire mass ?
Mass hierarchy ?

● gravity: of course can’t forget about a quantum description of gravity !



Beyond the Standard Model

Dan Melconian July 25, 2012
REU presentation

– 7

At our energy scales, we see four distinct forces . . .
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But these coupling ‘constants’ aren’t really constant : αi → αi(Q)

→ electromagnetic and weak strengths equal at ≈ 1013 GeV

→ strong force gets weaker, but doesn’t unify with EW. . . .
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But what if there is new physics we haven’t seen yet?

the running of the coupling constants would be affected;
maybe they converge at some GUT scale?

Are the three theories of E & M, weak and strong
interactions all low-energy limits of

one unifying theory?
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colliders : CERN, SLAC, FNAL, BNL, KEK, DESY, . . . .

direct search of particles

27 km

“go big or go home”

● large multi-national collabs

● billion $ price-tags
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nuclear physics : radioactive ion beam facilities (ISOL/frag)
indirect search via precision measurements

● smaller collaborations
● contribute to all aspects
● “table-top” physics
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● colliders : CERN, SLAC, FNAL, BNL, KEK, DESY . . .

● nuclear physics : traps, exotic beams, neutron, EDMs, 0νββ, . . .

● cosmology & astrophysics : SN1987a, Big Bang nucleosynthesis, . . .

● muon decay : Michel parameters: ρ, δ, η, and ξ

● atomic physics : anapole moment, spectroscopy, . . .

all of these techniques are complementary and important

● different experiments probe different (new) physics
● if signal seen, cross-checks crucial!

often they are interdisciplinary

(fun and a great basis for graduate students!)



History up to 1957

Dan Melconian July 25, 2012
REU presentation

– 11

● 1768: Kant debates nature of incongruent counterparts



History up to 1957

Dan Melconian July 25, 2012
REU presentation

– 11

● 1768: Kant debates nature of incongruent counterparts
● 1848: Pasteur observes optical rotation in chemical isomers



History up to 1957

Dan Melconian July 25, 2012
REU presentation

– 11

● 1768: Kant debates nature of incongruent counterparts
● 1848: Pasteur observes optical rotation in chemical isomers
● 1924: Laporte introduces idea of parity conservation in q. m.

V = (x◦, y◦)

(x◦, y◦)

(−x◦,−y◦)

P̂V = −V
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● 1924: Laporte introduces idea of parity conservation in q. m.

A = M.C. Escher reptiles

P̂A = +A
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● 1768: Kant debates nature of incongruent counterparts
● 1848: Pasteur observes optical rotation in chemical isomers
● 1924: Laporte introduces idea of parity conservation in q. m.

intrinsic parity ⇔ helicity or “handedness”

(spin is an axial vector)
r × p → (−r)× (−p) = r × p
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● 1768: Kant debates nature of incongruent counterparts
● 1848: Pasteur observes optical rotation in chemical isomers
● 1924: Laporte introduces idea of parity conservation in q. m.

intrinsic parity ⇔ helicity or “handedness”

● 1927: Wigner shows Maxwell’s equations conserve parity
● 1934: Fermi’s theory of β decay:

dW

dEe

=
G2

F

(2π)5
peEe(Ee − A◦)

2 |Mfi|
2

Mfi =
∫
ψ∗ Γi ψ, Γi = (S, P , V , A, T )
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● 1768: Kant debates nature of incongruent counterparts
● 1848: Pasteur observes optical rotation in chemical isomers
● 1924: Laporte introduces idea of parity conservation in q. m.

intrinsic parity ⇔ helicity or “handedness”

● 1927: Wigner shows Maxwell’s equations conserve parity
● 1934: Fermi’s theory of β decay:
● 1953: 6He, 19Ne decay suggested weak interaction is (S, T )
● 1953: Dalitz points out the “θ − τ puzzle”:

θ+ → π0π+ and τ+ → π+π+π−

(but same lifetime, mass, . . . )
● 1956: prompted Lee and Yang to question current convention

. . . existing experiments do indicate parity conservation in strong
and electromagnetic interactions, but that for weak interactions
. . . parity conservation is so far only an extrapolated hypothesis

unsupported by experimental evidence.

(Feynman bets parity is conserved)
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● 1768: Kant debates nature of incongruent counterparts
● 1848: Pasteur observes optical rotation in chemical isomers
● 1924: Laporte introduces idea of parity conservation in q. m.

intrinsic parity ⇔ helicity or “handedness”

● 1927: Wigner shows Maxwell’s equations conserve parity
● 1934: Fermi’s theory of β decay:
● 1953: 6He, 19Ne decay suggested weak interaction is (S, T )
● 1953: Dalitz points out the “θ − τ puzzle”:

K+ → π0π+ and K+ → π+π+π−

(same particle; parity not conserved)

● 1956: prompted Lee and Yang to question current convention

● 1957: Wu (60Co), Garwin (µ+) favour (V −A) interaction

(Feynman loses $50)
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● 1768: Kant debates nature of incongruent counterparts
● 1848: Pasteur observes optical rotation in chemical isomers
● 1924: Laporte introduces idea of parity conservation in q. m.

intrinsic parity ⇔ helicity or “handedness”

● 1927: Wigner shows Maxwell’s equations conserve parity
● 1934: Fermi’s theory of β decay:
● 1953: 6He, 19Ne decay suggested weak interaction is (S, T )
● 1953: Dalitz points out the “θ − τ puzzle”:

K+ → π0π+ and K+ → π+π+π−

(same particle; parity not conserved)

● 1956: prompted Lee and Yang to question current convention

● 1957: Wu (60Co), Garwin (µ+) favour (V −A) interaction

β decay has a long history of developing our

understanding of fundamental symmetries
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The Electroweak Interaction : SU(2)L×U(1) ⇒ W±

L , Z
◦, γ

Built upon maximal parity violation:

HSM = GF Vud e(γµ − γµγ5)νe u(γµ − γµγ5)d

Vector P̂ |Ψ〉 = −|Ψ〉

Axial − vector P̂ |Ψ〉 = +|Ψ〉
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The Electroweak Interaction : SU(2)L×U(1) ⇒ W±

L , Z
◦, γ

Built upon maximal parity violation:

HSM = GF Vud e(γµ − γµγ5)νe u(γµ − γµγ5)d

Vector P̂ |Ψ〉 = −|Ψ〉

Axial − vector P̂ |Ψ〉 = +|Ψ〉

low-energy limit of a deeper SU(2)R×SU(2)L×U(1) theory?

⇒ 3 more vector bosons: W±

R , Z
′

Simplest extensions: “manifest left-right symmetric” models

 only 2 new parameters: W2 mass and a mixing angle, ζ

|WL〉 = cos ζ|W1〉 − sin ζ|W2〉

|WR〉 = sin ζ|W1〉+ cos ζ|W2〉
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Aβ =
−2ρ
1+ρ2

(√
3
5
− ρ

5

)

Bν =
−2ρ
1+ρ2

(√
3
5
+ ρ

5

)

and Rslow = 0
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In the presence of new physics , the angular
distribution of β decay will be affected.

Aβ =
−2ρ
1+ρ2

(√
3
5
− ρ

5

)

→ −2ρ
1+ρ2

[

(1−xy)
√

3(1+x2)
5(1+y2)

− ρ(1−y2)
5(1+y2)

]

Bν =
−2ρ
1+ρ2

(√
3
5
+ ρ

5

)

→ −2ρ
1+ρ2

[

(1−xy)
√

3(1+x2)
5(1+y2)

+ ρ(1−y2)
5(1+y2)

]

and Rslow = 0 → y2

where x ≈ (ML/MR)
2 − ζ and y ≈ (ML/MR)

2 + ζ

are RHC parameters that are zero in the SM.
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In the presence of new physics , the angular
distribution of β decay will be affected.

Aβ =
−2ρ
1+ρ2

(√
3
5
− ρ

5

)

→ −2ρ
1+ρ2

[

(1−xy)
√

3(1+x2)
5(1+y2)

− ρ(1−y2)
5(1+y2)

]

Bν =
−2ρ
1+ρ2

(√
3
5
+ ρ

5

)

→ −2ρ
1+ρ2

[

(1−xy)
√

3(1+x2)
5(1+y2)

+ ρ(1−y2)
5(1+y2)

]

and Rslow = 0 → y2

where x ≈ (ML/MR)
2 − ζ and y ≈ (ML/MR)

2 + ζ

are RHC parameters that are zero in the SM.
⇒ Precision measurements test the SM

Goal must be . 0.1%
(see Profumo, Ramsey-Musolf and Tulin, PRD 75 (2007))
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Z
AX −→ Z∓1

AY + e± + νe

pβ

pν

pY

θe,ν

pX=0

● perform a β decay experiment
on short-lived isotopes
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Z
AX −→ Z∓1

AY + e± + νe

pβ

pν

pY

θe,ν

pX=0

● perform a β decay experiment
on short-lived isotopes

● make a precision measure-
ment of the angular correla-
tion parameters

● compare the SM predictions
to observations

● look for deviations as an
indication of new physics
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● so much scattering!
● low polarization
● short relaxation time
● poor sample purity
● pain to flip spin
● need long t1/2



Traps around the world

Dan Melconian July 25, 2012
REU presentation

– 16

Many groups around the world realize the potential of using traps
for precision weak interaction studies

atom traps ion traps

Fr

He

Rb

planned

Na

K

Na
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Any type of trap requires a velocity-dependent force to cool an
object

lbs lbs
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object . . . as well as a position-dependent force that defines x = 0

lbs

Laser light
−→ velocity-dependent force

Zeeman effect
−→ position-dependent force
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Any type of trap requires a velocity-dependent force to cool an
object . . . as well as a position-dependent force that defines x = 0

lbs

Laser light
−→ velocity-dependent force

Zeeman effect
−→ position-dependent force

=⇒ atom trap = damped harmonic oscillator ⇐=
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How can light seriously affect a thermal atom?

vs.

~c · 2π
λ

= (197.3 MeV fm)( 6.28
770 nm

)

= 1.6× 10−6 MeV

⇒ ~k ∼ 1.6 eV/c

1

2
Mv2 = kBT

Mv =
[

2(40×106 keV/c2)

(8.62×10−8 keV/K)(295 K)
]

1/2

⇒ Mv ∼ 45 keV/c
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Cycling Transitions!

vs.

~k × 30, 000 ≈Mv
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cycling transition ⇒ not everything trappable
HeH

HoDyTbGdEuSmPmNdPr YbTmErLa Ce

EsCfBkCmAmPuNpUPa NoHdFmAc Th

Fr Ra RgDsMtHsBhSgDbLr Rf

Cs Ba TlHgAuPtIrOsReWTa PoBiPb At RnLu Hf

Rb Sr InCdAgPdRhRuTcMoNb TeSbSn I XeY Zr

K Ca Br KrGaZnCuNiCoFeMnCrV SeAsGeSc Ti

MgNa Al SPSi Cl Ar

Li B ONC F NeBe
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cycling transition ⇒ not everything trappable
HeH

HoDyTbGdEuSmPmNdPr YbTmErLa Ce

EsCfBkCmAmPuNpUPa NoHdFmAc Th

Fr Ra RgDsMtHsBhSgDbLr Rf

Cs Ba TlHgAuPtIrOsReWTa PoBiPb At RnLu Hf

Rb Sr InCdAgPdRhRuTcMoNb TeSbSn I XeY Zr

K Ca Br KrGaZnCuNiCoFeMnCrV SeAsGeSc Ti

MgNa Al SPSi Cl Ar

Li B ONC F NeBe

and still the trap is shallow. . .
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neutralizer

σ−

σ+

I
σ−

ion beam

I

σ+

σ−

σ+

Raab PRL 59 (1987)

● isomerically selective!
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neutralizer

σ−

σ+

I
σ−

ion beam

I

σ+

σ−

σ+

Raab PRL 59 (1987)

● isomerically selective!
● point-like source!

(. 1 mm3 FWHM)
● cold atoms! (. 1 mK)
● backing-free source!

an ideal source of radioactives for β-decay experiments!
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Zr neutralizer

σ+

σ+

K+ ion beam

I

I

σ− σ−

σ+

σ−

37K yield with 40 µA on TiC #1: 6× 107/s
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Traps provide a backing-free, cold (. 1 mK),
localized (. 1 mm3) source of short-lived

radioactive atoms

Detect pβ and precoil ⇒ deduce pν !
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● Shake-off e− detection
● Better control of OP beams
● Bquad → BOP quickly: AC-MOT

(Harvery & Murray, PRL 101 (2008)
● Increased β/recoil solid angles
● Stronger E-field
● . . .
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● Shake-off e− detection
● Better control of OP beams
● Bquad → BOP quickly: AC-MOT
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deduce P based on a model of the
excited state populations:

⇒ Pnucl = 96.74± 0.53+0.19
−0.73
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P1/2

mF

S1/2

0 2

σ±

−2= −1 1

deduce P based on a model of the
excited state populations:

⇒ Pnucl = 96.74± 0.53+0.19
−0.73

for MOT currents rapidly switched to zero, the induced

eddy currents continue to produce B fields until they too

reduce to zero.

In practice the B field due to the MOT takes  10 ms to

reduce to <10!7 T, this time depending on the proximity

of conductors to the coils, their shape, and resistivity.

During this time, a large fraction of trapped atoms escape,

resulting in a cold atom density that rapidly falls to zero.

Losses can be reduced by leaving the cooling lasers on to

create an optical molasses (if this does not interfere with

the experiment); however, the loss problems remain. The

comparatively long time taken for the B field to decay also

reduces data accumulation rates, since the repetition rate is

then only  50 Hz.

It is clearly advantageous to eliminate these constraints.

Several methods have been attempted, including shaping

the dc MOT driving current at switchoff to try to cancel

fields due to eddy currents [10]. This technique is compli-

cated and requires different currents when spectrometer

0 2 4 6 8 10 12 14 16

Time (ms)

MOT Current

Laser Polarization

Switch on 
Electron Spectrometer

σ
+

σ
-

FIG. 1 (color online). The switching configuration for the ac

MOT. The MOT is driven by an alternating supply, so that the net

induced current in conductors surrounding the MOT coils is

zero. The polarization of the six trapping laser beams is switched

at the same rate as the MOT current, so as to maintain trapping.

Experiments using charged particles are conducted during the

time the MOT current is zero.

PRL 101, 173201 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

24 OCTOBER 2008
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BB1 Si-strip
detector

electron
M

C
P

e−

β+

BC408

±I

Asymmetry =
N(σ+)−N(σ−)

N(σ+)−N(σ−)

∼ PAβ

〈
pe
Ee

〉
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dW ∼ PBν p̂ν · î + PD
î · (pβ×p̂ν)
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dW ∼ PBν p̂ν · î + PD
î · (pβ×p̂ν)

Eβ

β+

Ar+

MCP

ŷ E-field

ν

OP beam

−ẑ

x̂

p̂β ≈ ẑ ⇒ pν ≈ −pAr

x̂ asymmetry ∼ PBν

ŷ asymmetry ∼ PD
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1st : 〈Bν〉 = (0.995± 0.040
(stat)

)BSM
ν

2nd : 〈Bν〉 = (0.975± 0.031
(stat)

)BSM
ν

⇒ Bν = 0.981(26)(17)BSM
ν

(Melconian, PLB 649 (2007) 370)

A
A

r
A

A
r

A
A

r
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Expected limits if Aβ, Bν and Rslow all measured to 0.1%

see Profumo, Ramsey-Musolf and Tulin, PRD 75 (2007) 075017
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(adapted from Thomas et al., Nucl Phys A 694; see also Severijns,
Beck and Naviliat-Cuncic, Rev Mod Phys 78 (2006))

different experiments are complementary
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● SM is fantastic, but incomplete
● many exciting avenues to find more complete model
● needed: precision measurement of correlation parameters
● (AC-)MOT + opt. pumping = cool physics
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● SM is fantastic, but incomplete
● many exciting avenues to find more complete model
● needed: precision measurement of correlation parameters
● (AC-)MOT + opt. pumping = cool physics

Don’t get married five days before you’re supposed to give a talk! ;-)
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